Mouse model of alloimmune-induced vascular rejection and transplant arteriosclerosis.
نویسندگان
چکیده
Vascular rejection that leads to transplant arteriosclerosis (TA) is the leading representation of chronic heart transplant failure. In TA, the immune system of the recipient causes damage of the arterial wall and dysfunction of endothelial cells and smooth muscle cells. This triggers a pathological repair response that is characterized by intimal thickening and luminal occlusion. Understanding the mechanisms by which the immune system causes vasculature rejection and TA may inform the development of novel ways to manage graft failure. Here, we describe a mouse aortic interposition model that can be used to study the pathogenic mechanisms of vascular rejection and TA. The model involves grafting of an aortic segment from a donor animal into an allogeneic recipient. Rejection of the artery segment involves alloimmune reactions and results in arterial changes that resemble vascular rejection. The basic technical approach we describe can be used with different mouse strains and targeted interventions to answer specific questions related to vascular rejection and TA.
منابع مشابه
Bim regulates alloimmune-mediated vascular injury through effects on T-cell activation and death.
OBJECTIVE Bim is a proapoptotic Bcl-2 protein known to downregulate immune responses and to also be required for antigen-induced T-cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T-cell responses in a model of vascular rejection. ...
متن کاملDendritic Cells Function in Transplantation Arteriosclerosis
Rationale: Heme oxygenase (HO)1 is an important modulator of physiological function with cytoprotective properties. Although HO1 has previously been associated with an improved survival of the vascular allograft in rat models in response to pharmaceutical induction of HO1 the exact mechanism by which HO1 exerts it protective function remains to be elucidated. Objective: We sought to define the ...
متن کاملAllograft Vasculopathy Versus Atherosclerosis Antibody and Complement in Transplant Vasculopathy Interferon- Axis in Graft Arteriosclerosis Vascular Remodeling in Transplant Vasculopathy Stem Cells and Transplant Arteriosclerosis Chemokines and Transplant Vasculopathy
Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent de...
متن کاملDendritic Cell Function in Transplantation Arteriosclerosis
Rationale: Heme oxygenase (HO)1 is an important modulator of physiological function with cytoprotective properties. Although HO1 has previously been associated with an improved survival of the vascular allograft in rat models in response to pharmaceutical induction of HO1 the exact mechanism by which HO1 exerts it protective function remains to be elucidated. Objective: We sought to define the ...
متن کاملExacerbated transplant arteriosclerosis in inducible nitric oxide-deficient mice.
BACKGROUND Inducible NO synthase (NOS2, or iNOS) is upregulated in grafts with transplant arteriosclerosis. However, the functional role of NOS2 in the pathogenesis of transplant arteriosclerosis remains unclear. NOS2 may regulate lesion development by modulating the early alloimmune response and/or late myointimal thickening. METHODS AND RESULTS To determine whether NOS2-mediated pathways pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 99 شماره
صفحات -
تاریخ انتشار 2015